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Abstract. In the research project “KBE4Infra”, knowledge-based engineering (KBE) techniques for 

capture, storage and reuse of engineering knowledge in bridge engineering are investigated. A rich 

data source of bridge engineering knowledge, are Bridge Management Systems (BMS). The work 

present addresses the question, whether it is possible to gain knowledge by the use of data in bridge 

management systems and how this knowledge can be used beneficially in conceptual bridge design 

phases. To achieve this, we propose the use of a Bayesian network. Thus, we introduce and review 

well known network learning and inference algorithms for Bayesian networks. Then, promising 

methods are matched to the needs of the proposed approach. Finally, a proof of concept will show 

the practicality of the chosen approach. 

1. Introduction 

In the research project “KBE4Infra”, knowledge-based engineering (KBE) techniques for 

capture, storage and reuse of engineering knowledge in bridge engineering are investigated 

(Singer et al. 2015). In the course of this project, generation and comparison of various design 

alternatives in early design phases are mainly taken into account. KBE aims at the “the use of 

advanced software techniques to capture and re-use product and process knowledge in an 

integrated way” (Stokes 2001). Compared to previous approaches, the present system is 

strongly based on building information modeling. Furthermore, visual programming is used for 

the geometric semantic modeling of the bridge. This enables the possibility of real-time 

modelling, evaluation, and optimization of bridge structures. While setting up a knowledge base 

and an inference engine, formalizing engineering knowledge in computer interpretable rules is 

the most important and difficult step. 

In recent years, Artificial Intelligence (AI) techniques have been intensively researched in civil 

engineering (Lu et al. 2012; Schneider et al. 2015). In the course of these studies, the use of 

expert systems, rule-based systems, knowledge-based engineering, case-based reasoning, 

neural networks, machine learning, and their underlying technologies like first order logic, 

fuzzy logic, forward and backward chaining, semantic networks, genetic programming were 

investigated to enhance typical civil engineering tasks. In bridge engineering, the application 

of AI methods was considered for various tasks throughout bridge lifecycle phases, like in 

conceptual design, analysis, construction, operation, and maintenance. To the present day, these 

systems have hardly reached a broader use in practice for several reasons (Reich 1995): The 

research was often focused on narrow and specialized engineering subtasks, not on larger and 

more integrated problems. In addition, a building product model was not yet established and 

therefore not used. However, a product model, acting as a communication base, is indispensable 

to gain reliable design solutions, since in bridge engineering design tasks interact closely and 

influence each other.  

Currently, a fundamental change in the Architecture, Engineering and Construction (AEC) 

industry by the introduction of the Building Information Modeling (BIM) technology (Eastman 

et al. 2011) takes place. BIM aims to represent the complete building facility in a digital product 
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model (Eastman 1999), which is used throughout the whole life-cycle. Furthermore, parametric 

modeling is more and more incorporated for the design of infrastructure facilities (Boeykens 

2012). Apart from that, the Industry Foundation Classes (IFC), a non-proprietary data-format 

for the exchange of product models, has already reached a convenient level. This data format 

has the potential to increase the integration of existing analysis tools in the design workflow of 

bridges dramatically in the near future. Figure 1 shows a building information model of 

reinforced concrete road bridge in a low to mid level of detail. 

 

Figure 1:   Building information model of a bridge 

As part of knowledge modeling, knowledge representation and inference, suitable existing AI 

methods have to be chosen. In this paper, we propose to use a Bayesian network to achieve 

these tasks. Therefore, we introduce and review well known network learning and inference 

algorithms for Bayesian networks. Then, promising methods are matched to the needs of the 

proposed KBE approach for bridge engineering. Finally, a proof of concept will show the 

practicality of the chosen approach. 

 

2. Problem definition 

Preliminary design focuses on the exploration of various design options leading to an optimal 

or near-optimal design solution with regard to technical, ecological, creative, and economic 

aspects of the planned structure. The generated design solution serves as a basis for determining 

the construction costs, preparing the tendering, elaborating the detailed design, and finally 

executing the construction work itself. The design of bridge structures is a highly iterative 

process, which is heavily dependent on external conditions, such as the location and the 

intended function of the structure. 

As part of the bridge design, a bridge structure is described by the essential design elements like 

superstructure, substructure, foundation, abutment, bearing, bridge equipment, materials and 

construction methods. For each component a very large number of corresponding regulations 

and guidelines specifying the design and function exists. The design for each bridge is mainly 

dependent on the boundary conditions like alignment and traffic type or the existing terrain and 

soil conditions found in-situ. Beyond the engineering knowledge in codes and guidelines, 

knowledge is implicitly represented by existing bridges. It is desirable to get useful hints 

towards possible design solutions for the present circumstances. We aim to use this data to gain 

knowledge for new design problems and narrow the design space. 
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A rich data source to achieve this, are Bridge Management Systems (BMS). BMSs are software 

systems to manage large infrastructure assets. They are usually operated by the road authorities 

of each country. A BMS consists of a database where all information belonging to a bridge 

structure is documented. The database typically holds general information like the name of the 

bridge structure, the location, as well as construction data, the condition of bridge parts, 

pictures, and drawings. For our work, data like bridge type, bridge length, number of piers and 

superstructure type are important information stored in the database. In Germany the bridge 

management system “SIB Bauwerke” depicted in Figure 2 is well known; All over the world 

several systems are used, which do not differ greatly from one another. 

 

Figure 2:   General view in the bridge management system SIB-Bauwerke (WPM - Ingenieure 2015) 

This paper addresses the question, whether it is possible to gain knowledge by the use of data 

in bridge management systems and how this knowledge can be used in conceptual bridge design 

phases. With the help of the present approach we want to support bridge engineers throughout 

their planning tasks, for example a feasibility analysis, by answering questions like the 

following ones: (i) Which construction type, materials, superstructure types are usually used to 

build a bridge crossing a river with a width of 10m? (ii) Which superstructure height needs to 

be reckoned for a certain span width and superstructure type? (iii) Which design options cannot 

be used for the conditions in-situ? The information delivered by the system and further settings 

given by the bridge engineer are then used to generate BIM models for each variant of the 

bridge. With the help of these models further simulation and analysis processes could be 

performed. 

 

3. Methods 

3.1 Bayesian network 

In artificial intelligence various methods for knowledge representation exist. To represent 

knowledge in an uncertain domain and to perform probabilistic reasoning Bayesian networks 

are well known. They are based on Bayes’ theorem, which describes the conditional probability 

𝑃(𝐴|𝐵) of an event 𝐴 for a given event 𝐵. It is defined as: 
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A Bayesian network is defined by a directed acyclic graph (DAG), where each node 𝑁 

represents a discrete or continuous random variable X = {𝑋1, . . . , 𝑋𝑛} and the edges 𝐸 represent 

conditional dependencies among variables. A directed link from node 𝑋 to node 𝑌 says that 𝑋 

is a parent of 𝑌. An arrow between two variables is usually interpreted as a direct influence of 

𝑋 (cause) on 𝑌 (effect). If no connection between two nodes exists, they are conditionally 

independent of each other. This is very intuitive and makes it easy for domain experts to 

formalize dependencies in the domain. Once the topology of the graph is defined, each node of 

the graph is associated with a conditional probability distribution 𝑃 = ( 𝑋𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) , 
which determines the impact of the parents of one node. The probabilities are denoted in 

conditional probability tables (CPT). The joint probability for a set of variable values x = {𝑥1, . 
. . , 𝑥𝑛} can be calculated by multiplication of each probability distribution: 

  

To set up the Bayesian network, two main tasks occur. First, one needs to learn the network 

structure, second is to calculate the A-priori conditional probability distributions for each node. 

In order to perform these steps, a sufficient amount of training data sets is needed. In the 

following sections, algorithms are introduced that allow to automatically generate the topology 

of the graph and the conditional probability distributions. After setting up the Bayesian network, 

it is possible to perform probabilistic reasoning tasks. For the present application this means 

that we take existing data sets from BMS to learn the network structure and to calculate the 

probability distribution tables and then perform probabilistic reasoning for a new bridge design 

problem. 

3.2 Structure learning  

Beside the possibility to define the graph structure by the help of a domain expert, it is also 

feasible to define the graph structure of a Bayesian network by learning from training sets in an 

automated manner. Therefore, algorithms like the CI-based search algorithm (De Campos 

2006) or the K2 algorithm (Cooper et al. 1992) exist. The Tree Augmented Naive Bayes (TAN) 

method was introduced by (Friedman et al. 1997). This algorithm creates a Bayesian network 

structure the following way. 

1. Compute the mutual information function 𝐼 (𝑋𝑖, 𝑋𝑗)  

for each pair of variables where 𝑖 ≠ 𝑗 

 . 

2. Generate a undirected graph where the edges are weighted by I(𝑋𝑖, 𝑋𝑗). 

3. Find a maximum weighted spanning tree, applying Kruskal’s algorithm. 

4. Set a root variable and set the direction of all edges to be outward from it. 
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3.3 Inference in Bayesian networks  

After setting up the Bayesian network, we would like to reason on this network. First, we need 

to differentiate between exact inference methods and approximate inference methods for 

Bayesian networks. Part of exact inference are the variable elimination algorithm and clustering 

algorithms. Common known algorithms for approximate inference in Bayesian networks are 

direct sampling methods, rejection sampling and likelihood weighting.  

Also well-known are the Markov chain Monte Carlo (MCMC) algorithms. Unlike the before 

mentioned algorithms, samples are not generated randomly from scratch. Here, based on the 

current sample, the next sample is generated by performing small random changes. A particular 

form of a MCMC is called Gibbs sampling (Neal 1993) which is well suited for inference in 

Bayesian networks.  

Gibbs sampling in Bayesian networks works as follows:  

1. Start with an arbitrary state. Fix the evidence variables. 

2. Initialize all other variables.  

3. Repeat n times:  

a. Randomly choose a non-evidence variable X  

b. Resample this variable X from P (X | all other variables)  

c. Count current state  

4. Normalize.  

Usually a pre-sampling or burn-in is performed to begin the Gibbs sampling from a more 

realistic starting state. 

4. Proof of concept  

In the following is to be demonstrated that the use of a Bayesian networks permits the 

determination (at least with a certain probability) of bridge design parameters on the basis of 

given boundary conditions. Up to now, it has not been possible to get access to real data from 

a bridge management system. However, in order to proof our approach, we generated random 

test data sets by the help of a knowledge-based system. We assume, that the generated output 

data is compliant to the current codes and guidelines. We focused on reinforced concrete road 

bridges. We choose the following variables to generate our test sets, also depicted in Figure 3: 

terrain depth, bridge length, cross section, horizontal curvature, bridge crossing angle, bridge 

type, number of piers, material type, superstructure type and superstructure height. In Table 1 

the chosen minimum and maximum values as well as the discretization for each variable is 

shown. Furthermore, the use as an input or output design parameter is indicated. 

The minimal necessary amount of data sets is mainly dependent on the number of connections 

in the network structure. In order to count a sufficient number of samples for all possible 

combinations and each variable, an either high number of training data or a very heterogenic 

set is necessary. In order to get meaningful results, we generated 10,000 training data sets. SIB 

Bauwerke contains about 8,000 data sets for bridges in the state Bavaria along motorways. The 

number would be much higher if all states in Germany and the other road types would be taken 

into account. For those data sets, the proposed approach could be used the same way. 

Comparable BMS systems in other countries typically hold a similar number of data sets. 
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Figure 3:   Chosen bridge parameters 

Table 1: Discretization of variables  

Variables Type Min value Max value Discretization Used as 

Bridge length Continuous 0 100 25 

Input 

Crossing angle Continuous 0 60 5 

Cross section Discrete {RQ 7.5, RQ 9.5, RQ 10.5, RQ 15.5} 

Horizontal curvature Continuous 0 13 1 

Terrain depth Continuous -50 0 10 

Bridge type Discrete {frame bridge, continuous girder bridge, arc bridge} 

Output 

Material type Discrete {reinforced concrete, pre-stressed concrete} 

Number of piers Continuous 0 6 1 

Superstructure height Continuous 0.5 5 0.5 

Superstructure type Discrete {plate, T-beam, girder box} 

 

We considered two variants for the generation of the Bayesian network. First is the generation 

by the help of the Tree Augmented Naive Bayesian Network Algorithm (TAN). Therefore, the 

algorithm was extended to work with multiple class nodes (Van Der Gaag et al. 2006). The 

spanning tree is generated as usual, excluding all class nodes. Instead of then connecting all 

class nodes to all nodes in the spanning tree, which would create a very strongly connected 

network, only the edges to the class nodes with high mutual information are connected. Strongly 

connected networks cause large probability tables which require larger amounts of data to be 

populated. Edges are added in order of mutual information values until the desired connectivity 

is reached. This can be a maximum information spanning tree. Otherwise a threshold can be set 

on the minimal MI to create an edge. Furthermore, the interconnections among the class nodes 

have been set by an expert a-priori, in order to reflect the order in which the design choices are 

commonly made. 

The second considered variant was the completely manual creation of the Bayesian network by 

a knowledge engineer. Both the necessary nodes as well as the edges in between are solely 

defined by a domain expert. In both cases the same class and non-class variables were chosen. 

Non-class nodes are bridge length, terrain depth, cross section, crossing angle, and horizontal 

curvature. The non-class nodes are used as input values and describe the boundary conditions 
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of a certain design problem. Class nodes are bridge type, superstructure type, number of piers, 

superstructure height, and materiel type. They provide the output values for the design 

parameters we search for. In Figure 4 and Figure 5 the graphs for both variants are depicted. 

Class variables have continuous border; the non-class node borders are dashed. Continuous 

styled edges occur in both graphs; the directions do not matter. 

  

Figure 4:   Variant 1 - TAN generated graph Figure 5:   Variant 2 - Manually created graph 

As you can see in the diagrams above, the input variables terrain depth und bridge length are 

the most important variables and the main conditions for the output variables in both variants, 

which reflects the reality as expected. The input variables horizontal curvature, crossing angle 

und cross section have minor influence on the output variables in both networks. Since we work 

with generated test data to learn the network structure in variant 1, the way of their generation 

could have main impact on the appearance of the network. It is possible that some conditions 

are implicitly effected by the generation algorithm. The manually created graph fits better to 

the design procedure bridge engineers usually perform than the automatically generated one 

(bridge length  bridge type  number of piers  superstructure type  superstructure height 

 material type). 

In order to sample results from the network, all non-class nodes are assigned with the respective 

input values, and all class nodes are then sampled using the Markov Chain Monte Carlo 

(MCMC) algorithm, counting the occurrences of all combinations of values for all class nodes. 

Therefore, a likelihood for each possible class parameter combination can be calculated. 

Combination that never occur are discarded and the remaining combinations are ranked 

accordingly (Zheng et al. 2011). In Table 2 the conditional probability table for the class node 

superstructure type is exemplarily shown for variant 1. Given the number of piers equal to 2, a 

probability distribution of 37%, 33%, and 30% for the given superstructure types can be 

derived. This means that in the training data set an almost equal number of bridges with two 

piers for each superstructure exists. For variables with more than one condition the table gets 

more complicated. For bridges with more than four piers only bridges with a plate 

superstructure occur. 

Terrain depth

Bridge type

Number of piers

Superstructure 
type

Bridge length

Horizontal 
curvature

Crossing angle

Cross section

Material type

Superstructure 
height

Terrain depth

Bridge type

Number of piers

Superstructure 
type

Bridge length

Horizontal 
curvature

Crossing angle

Cross section

Material type
Superstructure 

height
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Table 2: Conditional probability table for superstructure type for variant 1 

Number of piers Plate T-beam Girder box 

0 31% 37% 32% 

1 41% 13% 46% 

2 37% 33% 30% 

3 60% 30% 10% 

4 95% 5% 0% 

5 100% 0% 0% 

 

In order to test the generated Bayesian network, we set up two test scenarios. The scenario No. 

1 describes the use case of an ordinary road (RQ 10.5) crossing a valley or river with a bridge 

length of 100m and a maximum height of 37m. Scenario No. 2 specifies a design problem for 

a bridge with a length of 57m and a maximum height of 15m for a motorway (RQ 15.5). To 

simplify the test, the variables crossing angle and horizontal curvature are set to 0 for both 

scenarios. 

This experiments showed that the analysed input parameters returned a small set of feasible 

design variants with strong preferences that can be determined by those with distinctively high 

numbers of occurrences. The network generating small sets of possible designs implies that the 

number of possibilities is reduced successfully. If the information in the network would be 

sparse, all possible design combinations would be generated with uniform probability in the 

worst case. Since the truth is far from that, the results are meaningful. Exemplarily, the best 

four sample results for two different design scenarios and the two different graph generation 

variants are shown in Table 3 to 6. The two design scenarios differ in the values assigned to the 

non-class nodes which are denoted in the table description. 

 

Table 3: Design scenario No. 1 – variant No. 1: Best sample results for evidence variables bridge 

length=100, horizontal curvature=0, terrain depth=-37, crossing angle=0, cross section = RQ10.5  

Bridge type  Superstructure 

Type  

Material 

Type  

Superstructure 

Height  

Number of 

piers  

Probability  

frame plate pre-stressed  1.0 4.0 32,95% 

frame plate pre-stressed  1.0 6.0 11,97% 

frame plate reinforced  1.0 4.0 10,22% 

arc plate pre-stressed  1.0 4.0 7,37% 

 

Table 4: Design scenario No. 1 – variant No. 2: Best sample results for evidence variables bridge 

length=100, horizontal curvature=0, terrain depth=-37, crossing angle=0, cross section = RQ10.5  

Bridge type  Superstructure 

Type  

Material 

Type  

Superstructure 

Height  

Number of 

piers  

Probability  

frame T-beam pre-stressed  1.0 3.0 10,83% 

frame T-beam pre-stressed  1.0 2.0 8,60% 

frame girder box pre-stressed  2.0 2.0 8,32% 

frame plate reinforced  1.0 3.0 6,03% 
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Table 5: Design scenario No. 2 – variant No. 1: Best sample results for evidence variables bridge 

length=59, horizontal curvature=0, terrain depth=-15, crossing angle=0, cross section = RQ15.5  

Bridge type  Superstructure 

Type  

Material 

Type  

Superstructure 

Height  

Number of 

piers  

Probability  

continous girder girder box pre-stressed  1.0 0.0 61,78% 

continous girder T-beam pre-stressed  1.0 0.0 12,62% 

continous girder plate pre-stressed  1.0 0.0 9,05% 

continous girder girder box pre-stressed  2.0 0.0 5,78% 

 

Table 6: Design scenario No. 2 – variant No. 2: Best sample results for evidence variables bridge 

length=59, horizontal curvature=0, terrain depth=-15, crossing angle=0, cross section = RQ15.5  

Bridge type  Superstructure 

Type  

Material 

Type  

Superstructure 

Height  

Number of 

piers  

Probability  

continous girder girder box pre-stressed  1.0 0.0 23,29% 

frame bridge T-beam pre-stressed  1.0 2.0 7,68% 

frame bridge girder box pre-stressed  2.0 2.0 7,51% 

frame bridge T-beam pre-stressed  1.0 3.0 5,55% 

 

The outcome for the chosen test scenarios looks promising and showed that the approach works 

in principle. However, we expected more suitable advices. For example, in scenario No. 1 

variant No. 1 only superstructure types of type plate are listed Alternatives with less piers and 

therefore other superstructure types are not mentioned. In Table 5 continuous girder bridges are 

combined with a number of piers equal to 0 for all entries and several superstructure types, 

which makes no sense from a bridge engineering perspective. The chosen discretization step of 

1m for the variable superstructure height is too big. To achieve more feasible advices, more 

design variables and a finer discretization of those must be taken into account. Furthermore, a 

Bayesian network based on real-life data and not on randomly generated test data will provide 

much more realistic outcomes. Generally, the calculated probabilities for variant 1 are higher 

than for variant No. 2. This is because the generated network fits better to the generated training 

data sets than the manually created one. However, the manually created is the one which 

supports the bridge design process in a more intuitive way. 

 

5. Conclusion and Outlook  

In artificial intelligence Bayesian networks are well established for probabilistic reasoning in 

big data sources. We presented an approach to use Bayesian networks for purposes in 

preliminary bridge design phases, namely to gain knowledge implicitly stored in bridge 

management systems. It needs to be mentioned that the existing knowledge used in early bridge 

design phases cannot be captured in explicit if-then rules since it is highly uncertain. Thus, the 

use of a Bayesian networks perfectly fits this need. 

It could be shown that, in principle, our approach is suitable to support the bridge design 

engineer by providing proper design solutions. To achieve more feasible advices, more design 
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variables and a finer discretization of those must be taken into account. The hypothetical case 

is limited on early design stages. In order to include further life-cycle aspects (e.g. operation 

and maintenance) into the decision making process, information like the operation cost of the 

bridge structure must be included. BMSs usually provide this type of information. We then can 

think about answering questions like, which construction type works well under which 

boundary conditions concerning the maintenance costs?  

In future work, we will apply the shown concept to real world data from bridge management 

systems. Additionally, we want to develop methods to extend the Bayesian network with 

explicit knowledge to achieve a hybrid knowledge representation for bridge engineering. 

Furthermore, we will think of machine learning techniques to fill knowledge gaps in the 

knowledge base. Moreover, other artificial intelligence methods like artificial neural networks 

could be assessed for their applicability. 
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