MultikOSi – Support systems for urban events: Multicriterial integration for openness and safety
Sub-project:
Research into scale transitions in context of computer-aided pedestrian simulations
Joint research project Homepage:
Team: P. Kielar, O. Handel, D. Biedermann, A. Borrmann
Cooperation partner:
Hochschulreferat 6 - Sicherheit und Strahlenschutz (RefSi), TU München
Fakultät für Informatik und Mathematik, Hochschule München
Lehrgebiet Stadtsoziologie, TU Kaiserslautern
Fachbereich Mathematik, TU Kaiserslautern
Fachbereich Mathematik/Naturwissenschaften, Universität Koblenz-Landau
IMS Gesellschaft für Informations- und Managementsystem bmH
VDS GmbH - Veranstaltung | Dienstleistung | Sicherheit
Associated partner:
Strategisches Innovationszentrum der Bayerischen Polizei (SIZ) Bayerisches Landeskriminalamt
Funding:
Das Bundesministerium für Bildung und Forschung (BMBF)
Running period:
01.09.2013 till 31.08.2016
Sub-project description
Events like public viewing, city festivals or concerts are an integral component of urban life. In order to create accident-preventing safety concepts, the organizers and security forces of such events are still in need of scientifically proven planning aids. The purpose of the project is to support those responsible with a better foundation for decisions by evolving new methods combining and integrating known ones. The research objective of the CMS Department is to develop novel multiscale techniques for computational simulations of pedestrian flows. The simulation results help experts to plan and execute urban events.
A multiscale coupling of simulation models featuring different spatial discretization levels is to be developed for the purpose of reducing the disadvantages of the different models. Macroscopic simulation models, which rest upon a network abstraction of the scenario, may be highly efficient but ignore interactions between individuals. In contrast, microscopic models exhibit an excellent spatial resolution but tend to involve a great amount of computational input. In order to overcome the conflicting goals of high spatial accuracy and fast computation times, we will realize a scale-sensitive integration of existing methods. This approach will lower the impact of the respective downsides. Based on the given precision requirement, an area can be selected within a simulation scenario in order to implement a different simulation engine in each chosen region. The main scientific challenge of this approach is to research spatial resolution transition methods at the bounds of the simulations areas. The multiscale transition approach has to ensure that the simulation methods employed remain stable. A dynamic switching between different simulation systems can extend the promised multiscale techniques. Switching the simulation models leads to a zoom-in approach. It makes it possible to swap the simulation models of arbitrary areas of the scenario and thus change the spatial resolution required.
The second objective is to utilize existing information on the structural character of the venue as a direct input parameter for the simulation. For this purpose, we will research new methods for extracting geometrical information from digital building and city models. The scientific challenge is to provide all the information acquired at an appropriate level of abstraction for simulation purposes.
A demonstrator implementation will display the feasibility of the acquired methods and concepts. In this context, the new simulation framework MomenTUM v2 pedestrian simulator was developed.
Publications
▪ |
Kielar, P. M.; A., Borrmann: Spice: A Cognitive Agent Framework for Computational Crowd Simulations in Complex Environment Autonomous Agents and Multi-Agent Systems, 2018 DOI: 10.1007/s10458-018-9383-2 |
![]() ![]() ![]() ![]() |
▪ |
Kielar, Peter M.; Biedermann, Daniel H.; Kneidl, Angelika; Borrmann, André: A unified pedestrian routing model for graph-based wayfinding built on cognitive principles Transportmetrica A: Transport Science 14 (5), pp. 406-432, 2017 DOI: 10.1080/23249935.2017.1309472 |
![]() ![]() ![]() ![]() |
▪ |
Bareth, Thomas: Baudimensionierung hinsichtlich Fluchtwegesicherheit und Komfort – eine Betrachtung von ingenieurtechnischen Berechnungsmethoden vor dem Hintergrund der baurechtlichen Vorschriften Betreuer: Kielar, Peter Masterarbeit, 2017 |
![]() ![]() ![]() |
▪ |
Handel, O.; Borrmann, A.: Service bottlenecks in pedestrian dynamics Transportmetrica A: Transport Science 14 (5), pp. 392-405, 2017 DOI: 10.1080/23249935.2017.1280712 |
![]() ![]() ![]() |
▪ |
Lahr, S.: Durchführung einer mikroskopischen Personenstromanalyse zur Optimierung und Evaluation der Abläufe, von Umbaumaßnahmen des Münchner Hauptbahnhofes Betreuer: Kielar, Peter Masterarbeit, 2017 |
![]() ![]() |
▪ |
Kielar, Peter M.; Hrabák, Pavel; Bukáček, Marek; Borrmann, André: Using Raspberry Pi for Measuring Pedestrian Visiting Patterns via WiFi-Signals in Uncontrolled Field Studies In: Proc. of the 12. Conference on Traffic and Granular Flow, Washington DC, USA, 2017 |
![]() ![]() ![]() |
▪ |
Lauterbach, Sven: Performanceoptimierung von Fußgängersimulationen durch Einsatz von Parallelisierungstechniken Betreuer: Peter, Kielar Masterarbeit, 2017 |
![]() ![]() ![]() |
▪ |
Biedermann, D. H.; Kielar, P. M.; Riedl, A. M.; Borrmann, A.: Oppilatio+ - A data and cognitive science based approach to analyze pedestrian flows in networks Collective Dynamics 1, pp. 1-30, 2016 DOI: 10.17815/CD.2016.9 |
![]() ![]() ![]() ![]() |
▪ |
Cheng, Zhibin: Modelling Pedestrian Group Behaviors on a Music Festival Event Using an Agent-based Method Betreuer: Borrmann, A.; Handel, O. Masterarbeit, 2016 |
![]() ![]() |
▪ |
Thieme, Christian: Implementierung einer Sensorik für virtuelle Fußgänger im Kontext der agentenbasierten Modellierung und Simulation Betreuer: Bungartz, H. J.; Handel, O. Bachelorarbeit, 2016 |
![]() ![]() ![]() |
Alle Einträge anzeigen |
Contact
Peter Kielar